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Abstract. We comment on a recent application of the RPA method and its extensions to the case of the
two-level pairing model by N. Dinh Dang (Eur. Phys. J. A 16, 181 (2003)).

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.60.-n Nuclear-structure models and
methods

The aim of this Comment is to discuss and explain
several aspects related to the derivation and application
of the RPA theory in relation with a recent paper [1] by
Dinh Dang; there the RPA theory has been applied to the
two-level pairing model. We have some criticisms and re-
marks. We will start with the RPA in the boson formalism
as used by N. Dinh Dang [1]. We notice that Dinh Dang
uses a quite unconventional and non-systematic boson ex-
pansion. Let us restate the standard boson mapping in the
case of the two-level pairing model:

H =
ε

2
(N̂2 − N̂1)− gΩ

∑
jj′

A†
jAj′ , j, j′ = 1, 2 . (1)

To lowest order one has

A†
1 =

1√
Ω

∑
m>0

a†
1ma†

1m̄ → b1 ,

A†
2 =

1√
Ω

∑
m>0

a†
2ma†

2m̄ → b†2 , (2)

where b†i , bi are ideal Bose operators. The occupation num-
ber operators obey the exact relations

N̂1 =
∑
m

a†
1ma1m → 2(Ω − b†1b1) ,

N̂2 =
∑
m

a†
2ma2m → 2b†2b2 . (3)

Dinh Dang now uses the particle number condition 〈N̂1〉+
〈N̂2〉 = 〈N̂〉 ≡ N ≡ 2Ω, which holds if, in the absence
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of interaction, the lowest level is filled. From the above
number condition, one obtains

〈b†1b1〉 = 〈b†2b2〉. (4)

Dinh Dang deduces from this relation that b1 = b2 =
b, b†1 = b†2 = b†, i.e. it is assumed that it is approximately
valid to replace the two ideal bosons b1 and b2 by the single
one b. In the first part of this work we want to study
the validity of this single-boson approximation. Keeping
the two bosons the pairing Hamiltonian is given to lowest
order by

H = − ε

2
2(Ω − b†1b1) +

ε

2
2b†2b2 − gΩ

∑
i,j=1,2

b†i bj =

−ε(Ω−b†1b1)+εb†2b2−gΩ(b†2b2+b1b
†
1+b†2b

†
1+b1b2) . (5)

In the single-boson approximation we have

H = − ε

2
2(Ω−b†b) +

ε

2
2b†b − gΩ(b†b + bb† + b†b† + bb) =

−ε(Ω − b†b) + εb†b − gΩ(b†b + bb† + b†b† + bb) . (6)

Both Hamiltonians can trivially be diagonalized with the
help of an RPA (Bogoliubov transformation) among the
bosons. We obtain for (5)

H = Ω1b
†
1b1 + Ω2b

†
2b2 (7)

with

Ω1 = −g +
√

g + ε
√

ε + g(1− 2Ω) ,

Ω2 = g +
√

g + ε
√

ε + g(1− 2Ω) , (8)

and for (6)
H = ωb†b (9)



278 The European Physical Journal A

0 0.05 0.1 0.15 0.2 0.25

V

0

0.2

0.4

0.6

0.8

1

E
ex

c/
2ε

E
0

N-2
-E

0

N

E 0
N+2

-E 0
N

Ω2

Ω1
ω

Ω = 4,  Ν = 8

Fig. 1. Excitation energies Eexc in the non-superfluid region as
function of V = Ω/2ε described in the text, for particle number
N = 8. The spin of the levels is J = 7/2. The results refer to
exact calculations 2µ± = ±(EN±2

0 − EN
0 ) (double-dot–dashed

line, dotted line), standard pp-RPA eqs. (8) (solid line, dashed
line) and pp-RPA in the single-boson approximation eq. (10)
(dot-dashed line).

with

ω = 2ε

√
1− 2gΩ

ε
. (10)

In fig. 1 we have traced these different eigenvalues as a
function of V = gΩ/2ε. Also shown are the exact values
for the chemical potentials 2µ± = ±(EN±2

0 − EN
0 ) where

EN
0 are the exact ground-state energies obtained by diago-

nalization of the original pairing Hamiltonian. The reason
why we compare with 2µ± is given by the fact that the
eigenvalues of standard pp-RPA have to be identified with
these chemical potentials (see, e.g., [2–4]). We also see that
the eigenvalues Ω1, Ω2 follow, at least for small values of
V , quite closely the exact values. On the other hand, the
single-boson approximation yields a completely erroneous
result which seems to have nothing to do with the exact
solution.

Let us now comment in the superfluid phase. We note
that in the superfluid phase we can calculate in standard
QRPA the contribution of the q-term (see eq. (7) in [1])
of the Hamiltonian. Consequently, there is no reason to
neglect this term as discussed by N. Dinh Dang [1]. The
standard QRPA matrices are well known and given by

Ajj′ = 2 (Ej + 2qjj′) δjj′ + djj′ , (11)

Bjj′ = 2
(
1− 1

Ω
δjj′

)
hjj′ , (12)

where the quasiparticle energy is Ej =√(
εj − gv2

j − µ
)2 + ∆2 and the gap ∆, as calcu-

lated from the BCS equation, includes the self-energy
term. We have used the same notation as indicated in
the work by Dinh Dang. We remind, shortly, that in this
case, the gap is given by

∆ =

√
g2Ω2 − ξ2

4
, (13)

together with

u2
1 = v2

2 =
1
2

(
1− ξ

2gΩ

)
, (14)

v2
1 = u2

2 =
1
2

(
1 +

ξ

2gΩ

)
, (15)

µ = −g

2
, (16)

where ξ is defined as ξ = 2εΩ/(2Ω − 1). Using the latter
relations we can write

u2
2 − v2

2 =
ξ

2gΩ
; u1v1u2v2 = u2

2v
2
2 =

∆2

4g2Ω2
, (17)

u4
2 + v4

2 =
1
2
+

ξ2

8g2Ω2
; v4

2 =
1
4
+

ξ2

16g2Ω2
− ξ

4gΩ
(18)

and we can calculate the different contribution of each
term Ej , qjj′ , djj′ , and hjj′

E1 = E2 = gΩ +
∆2

4gΩ2
; q11 = q22 = − ∆2

4gΩ2
, (19)

d11 = d22 = −gΩ +
∆2

2gΩ
; d12 = d21 = − ∆2

2gΩ
, (20)

h11 = h22 =
∆2

4gΩ
; h12 = h21 =

gΩ

2
− ∆2

4gΩ
. (21)

Therefore, explicitly, the matrix elements are given by

A11 = A22 = gΩ − ∆2

2gΩ2
+

∆2

2gΩ
, (22)

A12 = A21 = − ∆2

2gΩ
, (23)

B11 = B22 = − ∆2

2gΩ2
+

∆2

2gΩ
, (24)

B12 = B21 = gΩ − ∆2

2gΩ
(25)

and the positive eigenvalues of the RPA matrix are given
by

Ω1 = 0, Ω2 = 2∆

√
1− 1

2Ω
(26)

in agreement with the result found by, e.g., Hagino and
Bertsch [3]. In the case of the fermion formalism of Dinh
Dang, to obtain the RPA matrix elements, we have to
begin with (see eqs. (57)-(61) in [1])

Ajj′ = 2 (Ej + 3qjj′) δjj′ + djj′ ,

Bjj′ = 2
(
1− 1

Ω
δjj′

)
hjj′ , (27)

where factor 3 is different from the correct factor appear-
ing in (11). Explicitly, in case (27), the QRPA matrices
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are given, as follows:

A11 = A22 = gΩ − ∆2

gΩ2
+

∆2

2gΩ
, (28)

A12 = A21 = − ∆2

2gΩ
, (29)

B11 = B22 = − ∆2

2gΩ2
+

∆2

2gΩ
, (30)

B12 = B21 = gΩ − ∆2

2gΩ
, (31)

where the gap ∆, as calculated from the BCS equation,
includes the self-energy term. The RPA eigenvalues are
given by (see eq. (65) in [1])

Ω1 = ∆

√
1
Ω

(
3∆2

4g2Ω3
− 1

)
, (32)

Ω2 = 2∆

√(
1− 3

4Ω

)(
1− ∆2

4g2Ω3

)
. (33)

When we neglect the q-term (see eq. (7) in [1]), we obtain

A11 = A22 = gΩ +
∆2

2gΩ2
+

∆2

2gΩ
, (34)

A12 = A21 = − ∆2

2gΩ
, (35)

B11 = B22 = − ∆2

2gΩ2
+

∆2

2gΩ
, (36)

B12 = B21 = gΩ − ∆2

2gΩ
, (37)

Ω1 = ∆

√
2
Ω

, Ω2 = 2∆

√
1 +

∆2

2g2Ω3
, (38)

which leads to RPA eigenvalues different from those given
by Dinh Dang for this case. However, if we divide the q-
term by a factor of 2, we obtain

A11 = A22 = gΩ +
∆2

2gΩ ,
(39)

A12 = A21 = − ∆2

2gΩ
, (40)

B11 = B22 = − ∆2

2gΩ2
+

∆2

2gΩ
, (41)

B12 = B21 = gΩ − ∆2

2gΩ
, (42)

which produces the following RPA eigenvalues:

Ω1 = ∆

√
1
Ω

(
1− ∆2

4g2Ω3

)
, (43)

Ω2 = 2∆

√(
1− 1

4Ω

)(
1 +

∆2

4g2Ω3

)
(44)

which coincide, exactly, with the solution given by Dinh
Dang in the case where he neglects the q-term. We see
that in this case the Goldstone theorem is violated and
therefore the particle number symmetry is not restored.

Dinh Dang also treats within the fermion formalism
several other approximations which do not produce the
Goldstone mode at zero energy. One does not very well
understand the aim of these considerations, since any way
it is well known [2,3,5] that the Goldstone mode should
come at zero energy to restore the particle number sym-
metry which otherwise is violated.

As a last point we would like to mention that Dinh
Dang is superposing addition and removal modes in the
non-superfluid phase in eq. (75). This superposition cou-
ples, simultaneously, N ± 2 states and therefore, obvi-
ously, violates the particle number conservation already
in the non-superfluid phase. On the other hand, it is
well known [2,3,5] that pp(hh)-RPA in the non-superfluid
phase perfectly respects the particle number symmetry:
the addition mode involves amplitudes 〈N+2|a†a†|N〉 and
the removal mode 〈N−2|aa|N〉. None of these amplitudes
violates the particle number.

In short, in this Comment we pointed out a number
of shortcomings and inconsistencies in the work by Dinh
Dang [1] involving pp-RPA and QRPA in a solvable model.

I would like to thank Guy Chanfray, Jorge Dukelsky and Peter
Schuck for discussions.
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